11 research outputs found

    Spatiotemporal genomic analysis reveals distinct molecular features in recurrent stage I non-small cell lung cancers

    Get PDF
    Stage I non-small cell lung cancer (NSCLC) presents diverse outcomes. To identify molecular features leading to tumor recurrence in early-stage NSCLC, we perform multiregional whole-exome sequencing (WES), RNA sequencing, and plasma-targeted circulating tumor DNA (ctDNA) detection analysis between recurrent and recurrent-free stage I NSCLC patients (CHN-P cohort) who had undergone R0 resection with a median 5-year follow-up time. Integrated analysis indicates that the multidimensional clinical and genomic model can stratify the prognosis of stage I NSCLC in both CHN-P and EUR-T cohorts and correlates with positive pre-surgical deep next generation sequencing (NGS) ctDNA detection. Increased genomic instability related to DNA interstrand crosslinks and double-strand break repair processes is significantly associated with early tumor relapse. This study reveals important molecular insights into stage I NSCLC and may inform clinical postoperative treatment and follow-up strategies

    Electron-ion collider in China

    No full text
    International audienceLepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 1033^{33} cm2^{−2} · s1^{−1}. Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC.The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies.This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.[graphic not available: see fulltext
    corecore